APPENDIX A

Historic Flood Photos

1977 Flood Photos

The following photos, taken during the flood event of 31 October 1977, were provided by Mr. R. Harling, resident of 10 George Street, Langholm. Note that the photos are believed to have been taken some time after peak river levels had been reached.

A: Looking upstream from Telford Road bridge

B: Looking upstream from George street

C: Looking downstream from Telford Road bridge

D: Looking downstream from George Street

E: Looking downstream from George Street

F: Looking downstream from George Street

G: Looking upstream from steps near 10 George H: Looking west from steps near 10 George

Street

Street

2015 Flood Photos

The following photos were taken during the flood event of 5 December 2015 and were provided by Dumfries and Galloway Council. The photos were taken throughout the day.

A – Looking upstream, confluence of River Esk and Ewes Water

B – River steps on George Street

C – River steps on George Street

D – Looking upstream on River Esk from George Street

E – Looking upstream on River Esk from Waterside

F – Looking downstream on River Esk from Waterside

- G Looking upstream on River Esk from George Street
- H Looking downstream on River Esk from George Street

I – Looking upstream on Wauchope Water from George Street

J – Flood gates installed on residential properties on George Street

K – Looking downstream on Wauchope Water from Caroline Street

APPENDIX B

Survey Information

Six West Survey: Sept 18

Section : 1.001

Regular Offsets Open Channel

	Note	es											
	Elev	ations	s in r	netre	es to	Ordna	ance	Datum	(Nev	vlyn)			
F	No.	Dra h	y 1		Revi	sion Chk	by P	McC		Drg by	y PMc	hk by	
) ייו	m	 fri	ee Eur	.	G	 }]]/	0	<u>]</u>		
		-	- U		I	C	DU	nci		- ** C	~¥		
	-	La	nę	gho	olr	n F Sc	loc che	od F eme	Pro	tect	tior	ר י	
		(Cre	oss	s S	Sec	tio	ons	- S	hee	t 1		
				C	, 1. <i>.</i>		٨	1~		∔ °			
			Info	J @slx-w	vest.co	om w	ww.slx-	vest.com	T 02	™ 8 9073 191	7		
-	Sc	ale 1:	:100	(A0)				Date	Septe	ember 2	25th, 2	018	
	Dr F	awing Revisi	g No. on	RL1	8092	25/Cro	oss S		s - Sh	eet 1			

Aspect Survey: Feb 19

Section BRIDGE 3 DS Horizontal Scale 1: 200 Vertical Scale 1: 200

Vertical Scale 1: 200

Link Fe Existing G Section D Water Lev	ature Legend round Level — etail — el —		-	
Wall Metal Wood Road	-		- - - -	
Section Li	nes —		-	
Notes: Horizontal Control points are relative to the NATIONAL GRID. All levels are relative to ORDNANCE DATUM.				
The survey was	s tied into the previous	survey Ref No : A491	4	
STN	EASTING	NORTHING	LEVEL	
Tel : O	Land + Hydro CHARTERE Thornhouse Bal 01294 313399 KA E-mail: mail@ Web: www.a	Dgraphic Survey D SURVEYORS Business Centre lot Road Irvine Fax : 012 12 OHW @aspectsurveys.com	'S 94 313389	
Client :	ELMWC 74 BOUC BE CO. J	RPS OOD HOUSE CHER ROAD LFAST ANTRIM		
Project Title :	B1			

CROSS SECTION SURVEY **RIVER ESK** LANGHOLM

Project No: A6949	Scale : 1:500
Surveyed date : 22nd February 2019	^{Issued date} : 27th February 2019
Surveyed by : AS	Checked by : RM
Sheet No. : 4 of 4	Plot Scale: 1:1 @ A1

Link Feature Legend	
Existing Ground Level	
Section Detail	
Water Level	
Wall	
Metal	
Wood	
Road	
Section Lines	

Notes:

Client :

Project Title :

Horizontal Control points are relative to the NATIONAL GRID.

All levels are relative to ORDNANCE DATUM.

The survey was tied into the previous survey Ref No : A4914.

	CONTROL STATION COORDINATES				
STN	EASTING	NORTHING	LEVEL		

Rspe	ct	
Land + H	ydrographic	c Surveys
CHARTE	ERED SURV	/EYORS
Thornh	ouse Business	Centre
	Ballot Road	
Tel : 01294 313399	Irvine	Fax : 01294 313389
	KA12 OHW	
E-mail:	mail@aspectsurv	eys.com
Web: w	www.aspectsurve	ys.com

RPS ELMWOOD HOUSE 74 BOUCHER ROAD BELFAST CO. ANTRIM

BT12 6RZ

CROSS SECTION SURVEY RIVER ESK LANGHOLM

Project No: A6949	Scale : 1:200
Surveyed date : 22nd February 2019	Issued date : 27th February 2019
Surveyed by : AS	Checked by : RM
Sheet No. : 1 of 4	Plot Scale: 1:1 @ A1

Vertical Scale 1: 200

Horizontal Scale 1: 200

Vertical Scale 1: 200

Link Feature Legend	
Existing Ground Level	
Section Detail	
Water Level	
Wall	
Metal	
Wood	
Road	
Section Lines	

Notes:

Project Title :

Horizontal Control points are relative to the NATIONAL GRID.

All levels are relative to ORDNANCE DATUM.

The survey was tied into the previous survey Ref No : A4914.

	CONTROL STATION COORDINATES				
STN	EASTING	NORTHING	LEVEL		

	Accest
	Aspeci
	Land + Hydrographic Surveys
	CHARTERED SURVEYORS
	Thornhouse Business Centre
	Ballot Road
	Tel : 01294 313399 Irvine Fax : 01294 313389
	KA12 OHW
	E-mail: mail@aspectsurveys.com
	Web: www.aspectsurveys.com
Client :	550

RPS ELMWOOD HOUSE 74 BOUCHER ROAD BELFAST CO. ANTRIM

BT12 6RZ

CROSS SECTION SURVEY RIVER ESK LANGHOLM

Project No: A6949	Scale : 1:200
Surveyed date : 22nd February 2019	Issued date : 27th February 2019
Surveyed by : AS	Checked by : RM
Sheet No. : 2 of 4	Plot Scale: 1:1 @ A1

Link Feature Legend	
Existing Ground Level	
Section Detail	
Water Level	
Wall	
Metal	
Wood	
Road	
Section Lines	

Notes:

Horizontal Control points are relative to the NATIONAL GRID.

All levels are relative to ORDNANCE DATUM.

The survey was tied into the previous survey Ref No : A4914.

	CONTROL STAT	ION COORDINATES	
STN	EASTING	NORTHING	LEVEL

Aspect				
Land + Hydrog	raphic Surveys			
CHARTERED SURVEYORS Thornhouse Business Centre Ballot Road Tel : 01294 313399 Irvine Fax : 01294 313389 KA12 OHW E-mail: mail@aspectsurveys.com				
Client :				
ELMWOO	DHOUSE			
74 BOUCH				
BELI	FAST			
CO. Al	NTRIM			
BT12 6RZ				
Project Title :				
CROSS SECT	ION SURVEY			
RIVEI	RESK			
LANG	HOLM			
Project No: A6949	Scale : 1:200			
Surveyed date : 22nd February 2019	Issued date : 27th February 2019			
Surveyed by : AS	Checked by : RM			
Sheet No. : 3 of 4	Plot Scale: 1:1 @ A1			

APPENDIX C

Modelled Structures

21/52	Upstream	HEIGHT	LENGTH	WIDTH	MANNINGS	MANNINGS OPENING	SPRING HEIGHT
RIVER	Node ID	()	()	()	n (mm)	SHAPE	INVERT
		(m)	(m)	(m)			(m)
River Esk	RE_0984_US	5.861	9.9	12.279	0.0460	ARCH SPRUNG	2.997
	RE_0984_US	5.905	9.9	12.826	0.0460	ARCH SPRUNG	3.048
	RE_0984_US	4.959	9.9	12.226	0.0460	ARCH SPRUNG	3.068
River Esk	RE_1197!	6.401	1.7	3.572	0.0550	ARCH SPRUNG	6.401
	RE_1197!	6.401	1.7	46.306	0.0550	ARCH SPRUNG	6.401
	RE_1197!	6.401	1.7	2.991	0.0550	ARCH SPRUNG	6.401
River Esk	RE_2842_US	14.245	3.2	5.377	0.0800	ARCH SPRUNG	13.245
	RE_2842_US	14.245	3.1	13.503	0.0800	ARCH SPRUNG	13.245
	RE_2842_US	14.245	3.1	13.030	0.0800	ARCH SPRUNG	13.245
Ewes Water	EW_0057	6.637	2.5	16.638	0.0550	ARCH SPRUNG	3.977
Ewes Water	EW_0464	3.475	1.9	23.390	0.0550	ARCH SPRUNG	3.475
Ewes Water	EW_1101	3.060	9.0	9.392	0.0550	ARCH SPRUNG	1.557
	EW_1101	3.041	9.0	9.801	0.0550	ARCH SPRUNG	1.493
Wauchope Water	WW_BR_US	3.911	2.0	9.516	0.0550	ARCH SPRUNG	1.411
	WW_BR_US	3.911	2.0	8.341	0.0550	ARCH SPRUNG	1.411
Wauchope Water	Footbridge_u/s	3.354	1.2	12.340	0.0400	RECT	0.000

River Esk

Ewes Water

Wauchope Water

APPENDIX D

Model Review

MODEL REVIEW

Project Title: Langholm Flood Protection Scheme		Job Number: IBE1511			
Status: F01		Reviewer comments: adjustm	ents from D01 acceptable		
Master database location: \\belf-eh-data-04\ICM_DB\IB	E1511 - Langholm Floc	od Protection Scheme.sndb			
Transportable database loc L:\Section 40\Job No IBE150 Issue Software (including version InfoWorks ICM 8.5.2	Transportable database location: L:\Section 40\Job No IBE1500 -\IBE1511 - Langholm Flood Protection Scheme\6_Hydraulic_Analysis\8_Model Issue Software (including version): InfoWorks ICM 8.5.2				
Project description & requi	rements:				
Model files: Is the naming convention appropriate? Do you need a description for the networks/scenarios etc?	Existing Scenario Network>Design Net	work> Langholm	24/09/18 FC		
Events: Climate change – applied to which events and how much?	Q2, Q5, Q10, Q30, Q As calculated during Q200CC – CC = 44%	50, Q100, Q200, Q1000. the hydrological analysis			
Scenarios: Existing/present day, sensitivity, defended/undefended, historic/options etc.	Present day for each See sensitivity sectio No defended scenari See calibration sectio	event. on for detail os on for historic scenarios			
Gauged Are there gauges in the study area that can be used for calibration/validation	There is a gauge 12k within model area	km downstream used but not			

1. Model extents

Item Checked	Modeller Comments	Reviewer Comments on D02
What is the study area described in the Brief?	River Esk from Approx. 1km US of Townsend Bridge through to Skipper's Bridge, Wauchope Water from Springhill through to the Esk, and the Ewes Water from Highmill Bridge to the Esk confluence,	24/09/18 FC
Are the model extents suitable? Contains the study area at largest event? Contains all (rainfall) contributing areas? Is there 2D flow leaving the model? Where?	The study area contains largest event.	
Is the downstream extent appropriate? Far enough from the area of interest to have an impact? Rule of thumb for backwater effect – 0.7D/S D = channel bank full depth, S = mean bed slope (mm)	Yes	
Provide a figure of model to show study area is covered.		

Upstream model extents:				
Watercourse name	Node	X	Y	
Ewes Water	EW_0000	336905	585887	
River Esk	RE_0000	335563	585262	
Wauchope Water	WW_0000	335630	584179	
Downstream model extent:				
Watercourse name	Node	X	Y	
River Esk	RE_2897_out	337146	582733	

2. Source of data

Data	Source	Date obtained	Appropriate for use? Reasoning	Supplied with log
River Esk, Wauchope Water & Ewes Water cross sections, structures	Procured by RPS & Topo survey undertaken DG Design and Aspect Surveys	May 2012	Yes Still appropriate for use	Yes (upon completion of project)
River Esk & f'bridge on Wauchope Water	Six West Surveys	Oct 2018	Yes	Yes (upon completion of project)
Lidar	Supplied by DGC	May 2012	Yes Most recently flown	n/a

Item Checked	Modeller Comments	Reviewer Comments on D02
Data If data older than 5 years check for changes	No recent data to check against	

3. Boundary Conditions

Item Checked	Modeller Comments			Reviewer Comments on D02
Upstream boundary:	Point inflows were applied at the following nodes:			24/09/18 FC
-	Model Node	River		
	WW_0000	Wauchope Water		
	RE_00000	River Esk		
	EW_0000	EWES Water		
Rainfall / laterals: Any runoff/infiltration rates for rainfall? Any loss to drainage network?	Lateral flows calculated during the hydrological analysis were disaggregated between the HAPs and distributed pro-rata, based on length, and applied to each link (river reach). See the Flood Study Report hydrology chapter for further info. Hydrograph timings will initially be based on the hydrological analysis and catchment response. The timings may then be adjusted if required to meet check flow HAPs values. No rainfall applied			
Downstream boundary: Detail node type, level, Q/H or normal depth boundary?	Normal depth bo of the last two se This is a function package. All tributaries of t River Esk and as determined by th River Esk.	oundary condition - bas actions immediately up a automatically applied the River Esk are dyna s such the downstrean ae water levels in the a	sed on the bed gradient ostream of the outfall. I within the modelling amically linked to the n boundaries are appropriate reach of the	

4. Model Construction

Item Checked	Modeller Comments	Reviewer Comments on D02
1D		
Model build history:	Reaches for River Esk, Ewes Water and Wauchope Water were built into the model using the cross section survey data procured in 2012.this was originally built in InfoWorks RS and converted to ICM. Additional sections downstream of Skippers Bridge were added in 2018 to the ICM model.	24/09/18 FC
Cross sections:	Cross sections were trimmed where appropriate to exclude	
Have cross sections been amended from survey?	low points to avoid flow split and checked against the LiDAR to ensure no secondary embankments were present.	
Provide figure of modelled vs surveyed cross sections.		
1D-2D? Extended sections sufficient - need to check for glass walling?		
Interpolated / copied	Cross sections were copied to create bridges.	
Appropriate use?	There are interpolated sections.	
Bank lines: How were bank lines	Bank lines were created from the end of the cross sections. The level associated with the end point of each modelled cross section was taken as the bank level at that location with intermediate elevations being interpolated from one section	
level info augmented? How?	The bank level information was augmented with LiDAR	
Are formal/informal defences included?	Banklines have been amended to remove any unrealistic high or low pints.	
How?	The river wall on the River Esk LHB along George Street has	25/03/19 FC
Do they tie in with the top of bank?	not been included as it is not a formal defence and has a number of gaps in it.	
Bankline discharge coefficient range: show examples.	Bankline discharge coefficient ranges from 0.6 – 0.8 depending on the nature of the bank. Examples are shown below:	
Modular limit range:		

Was the dtm augmented in any way – defences/buildings/c orrecting Lidar? Error in Lidar – show images, how was error identified, how was it corrected?	 Water for approx. 490m. The flow is confined to a linear flood plain within the 1D therefore 2D is not required For an accurate assessment of 2D flow paths the bare earth DTM data was used within the modelling package to generate the computational mesh, the mesh was then augmented to include buildings. Building footprints were defined by a GIS shape file which was extracted from the OS Master Map geodatabase 	
2D zone boundary type: Any other 2D boundary lines?	Vertical wall – there was no flow reaching the edge of the 2D mesh so there was no need to change from default	
Area:	313ha	
Resolution: Mesh resolution appropriate?	 2D zone: Max triangle area 25m² min element area 5m² 	25/03/19 FC
	 Mesh zone: Max triangle area 5m² min element area 1m² Mesh zone was added to show flooding through streets in more detail, no ground level modification 	25/03/19 FC
False blockages: Check simulation at roads/rail embankments etc., refine following calibration. Check small w/c in dtm, flows under bridges etc.	No false blockages were identified.	
Buildings: What element are used to represent buildings? What data was used to create buildings? Was it amended from original? How? Porosity value applied:	The building footprints were extracted from the OS Master Map geodatabase. The building footprints were imported into the model as porous polygons and designated as having a porosity of 0.01. The value used was adequate for purposes in the model	
Building threshold levels: Any FFL applied? From where, how? Raised from dtm by agreed amount?	The buildings were imported as mesh zones with the <i>Ground</i> <i>level modification</i> set to +300mm The church - raised by 1m (7no. steps to FFL)	

3.1 Structures

Item Checked	Modeller Comments	Reviewer Comments on D02			
1D structures in channel					
What data was used? Are all structures	Bridges on the River Esk and Ewes Water were built into the model using the 2012 survey data. The footbridge on the Wauchope Water was built using the 2018 survey data.				
represented? If not, why?	There are 8no. bridges in the model, details of which can be found in Appendix D of the Study.				
	Not all structures where represented. Duchess Bridge & a footbridge on the River Esk have not been included as they are not thought to cause restrictions to the flow.	25/03/19 FC			
Bridges:	The most appropriate bridge/culvert type was used was based on each structure.				
Include modelled name, location/road name, bridge and opening type, deck level and discharge	EW_0057 Highmill A7 Road bridge over Ewes Water – modelled with				
coefficient (and reason if amended from default)	one arch sprung opening The modelled bridge deck is set at the parapet level with discharge coefficient unchanged at 1.7.				
Bridge boundary	No spills over the structure				
used and appropriate?	EW_0464				
Any spills around or over the structure?	Milntown connect road bridge over Ewes Water – modelled with one arch sprung opening				
	The modelled bridge deck is set at the deck level with discharge coefficient unchanged at 1.7.				
	No spills around or over the structure				
	EW_1101				
	Ewes Water Bridge A7 Road bridge over Ewes Water – modelled with two arch sprung openings				
	The modelled bridge deck is set at the parapet level with discharge coefficient unchanged at 1.7.				
	No spills around or over the structure				
	WW_BR_US				
	Wauchope Bridge over Wauchope Water – modelled with two arch sprung openings				
	The modelled bridge deck is set at the parapet level with discharge coefficient unchanged at 1.7.				
	No bridge boundary				
	Spills over the structure (>0.5%)				
	RE_0984_US				
	Townhead Bridge – road bridge over River Esk – modelled with three arch sprung openings				
	The modelled bridge deck is set at the parapet level with				

	discharge coefficient unchanged at 1.7.	
	No spills around or over the structure	
	RE_1197!	
	Foot Bridge over River Esk – modelled with three arch sprung openings	
	The modelled bridge deck is set at the deck level with discharge coefficient unchanged at 1.7.	
	No spills around or over the structure	
	RE_2842_US	
	Skippers Bridge - road bridge over River Esk – modelled with three arch sprung openings	
	The modelled bridge deck is set at the parapet level with discharge coefficient unchanged at 1.7.	
	No spills around or over the structure	
	Footbridge	
	Foot Bridge over Wauchope Water – modelled with one rectangular opening	
	The modelled bridge deck is set at the deck level with discharge coefficient unchanged at 1.7.	
	No bridge boundary	
	Spills over the structure (>3.33%)	
Culverts:	No Culverts were identified	
Include modelled name, location/road name, conduit shape, roughness and headloss (and reason if amended from default)		
Are culvert inlets/outlets used? Why?		
Weirs:	On the Wauchope Water at Course Holm	
Include modelled	WW_0360	
name, type, discharge coefficient	Round nosed broad crested weir	
, , , , , , , , , , , , , , , , , , ,		
1D structures in 2D d	omain	
Formal / informal	Porous walls have been added to represent boundary walls	25/03/19 FC
defences	where they may have a substantial impact on flow paths (see diagram below). Heights were estimated from Google	
Review following		

3.2 Defences

Туре	Watercourse	Location	Model start	Model end	Model element type	Information source
n/a						

3.3 Roughness

Item Checked	Modeller Comments	Reviewer Comments on D02
Item Cnecked 1D: Approach used to apply – global or varying. Based on photos/walk over/CCTV? Where are panel markers used?	Modeller Comments Channel In-channel roughness values have been assigned based on guidance contained in the CIRIA Culvert Design Manual which have been extracted from Chow (1973), in conjunction with modeller's judgement. In-bank: 0.040 - 0.080 reaches vary from clean, winding to active mountainous watercourses with rocky and cobble beds large boulders Out-of-bank: 0.040 - 0.08 due to the extended sections banks vary from pasture and scattered brush to medium/dense brush	on D02 25/03/19 FC
	Panel markers are used at each vertices.	25/03/19 FC

2D:	Out-of-bank		FC 24/09/18
Should not be applied globally. LCM / OSMM? Any adjustments made?	The 2D model domain was split in uses based on the OS Master Ma Roughness values were assigned land uses as per the table below:		
	Class	Manning's n	
	General Surface	0.040	
	Glasshouse	1.000	
	Inland Water	0.030	
	Landform	0.035	
	Natural Environment	0.100	
	Path	0.016	
	Rail	0.020	
	Road Or Track	0.014	
	Roadside	0.015	
	Tidal Water		
	Unclassified		
	Building 1.000		
	Rough Grassland 0.035		
	Natural Environment Scrub	0.043	
	Non-coniferous Trees	0.05	
	Non-coniferous Trees		
	(Scattered),Rough Grassland	0.055	
	Natural Environment	0.00	
	Coniferous Trees	0.08	
	Structure	0.1	
Buildings:	The building footprints were extracted from the OS Master Map geodatabase. The building footprints were imported into the model as porous polygons and designated as having a		
	porosity of 0.01. The value used was adequate for model		

3.4 Model Boundary Conditions

Item Checked	Modeller Comments	Reviewer Comments on D02
Initial conditions: Initialising without issue?	No initial conditions.	FC 24/09/18
	2D parameters – 1d & 2d calcs are linked at minor time step	
Simulation Parameters: Any changes to space steps,	Simulation Parameter Drowned bank linearisation	

drown bank linearisation	threshold (m) changed from 0.01 to 0.1	
etc.?		

3.5 Model stability

Item Checked	Modeller Comments	Reviewer Comments on D02
Errors/warnings	Warnings	
	- Level of bank below adjacent elements	
	The messages are highlighting where the bank levels were lower than adjacent elements and have been changed. Bank levels can never be below the adjacent element ground level, therefore the default in the Run 2D Parameters is to adjust the bank levels based on adjacent element ground levels. These messages are unavoidable unless the terrain slopes away from the reach.	
	- More than one profile	
	There are two inflow profiles where a reach has a point inflow and a lateral inflow. It is right that they should both be added and used	
	- Depth exceeding section height	
	Innovyze support has confirmed that as long as the reaches are connected to the 2d zone these warnings can be ignored.	
	- Flow reversals	
	It is not always possible to completely remove flow reversals particularly if flows are significantly out of bank. Everything reasonable has been done to minimise them.	
Froude number:	The Froude number is not >1 in any location.	25/03/19 FC
Check if >1 anywhere? Why?		
Volume balance error: 0.5%AE	EP = 0.1838%	

3.6 Outputs & mapping of results

Run time:	35hours	
	The model has past the peak of the River Esk as well as each of the tributaries. The worst case flooding is within the model run time	
Timestep:	1D timestep = 1 second 2D timestep = dynamic	

River Esk

Wauchope Water

Langholm Flood Protection Scheme

Ewes Water

Simulation result files contained within transportable model	yes
Pdf flood extent / depth maps issued	

5. Calibration

3.7 Storm Desmond 5th December 2015

The most recent significant flood event in Langholm occurred on 5th December 2015. This event is the fifth largest on record at the Canonbie gauging station 12km downstream of Langholm. The River Esk overtopped its banks and homes in George Street were evacuated. A basement in Caroline Street and one in Laird's Entry were flooded, the Fire and Rescue Service pumped them out.

SEPA have a level gauge adjacent to the Thomas Telford Bridge, which has been used to calibrate the model. The extent of the flooding was not recorded and there are no recorded flood markers from this event. A number of timestamped photos were taken and these have been used to support the calibration. The flow gauge is a significant distance downstream from Langholm, therefore a direct correlation cannot be made between the gauge and the flooding in Langholm; neither in regard to the timing of the peak nor with the volumes between the two.

3.8 December 2015 Model Build

Through the hydrological analysis Storm Desmond has been calculated as a 1 in 12 year return period at the Canonbie gauge. An inflow file was set up for the 1 in 12 year estimated flows in all three watercourses based on the design hydrograph which has been calculated in the hydrological analysis. The model was run with this inflow file. The co-ordinates provided on the SEPA website for the gauging station indicated that it is located near the downstream face of the Thomas Telford Bridge, however onsite inspection located the gauge approximately 65m downstream of the bridge. The closest cross section within the model is RE_1017. The peak modelled water level at RE_1017 was compared to the peak level recorded for this event. The modelled flood extents were then compared to the photos taken during the event.

The river wall along George Street was built into the model with the gap at the steps. A number of existing boundary walls throughout the town which may have an impact on the flow paths were added as porous walls. See *Section 3.1 Structures, 1D structures in 2D domain* for further information on the porous walls.

The peak level recorded was at 18.15 on 05/12/15 and was 2.89m. With a gauge datum of 71.33mAOD this gives a peak recorded water level as 74.22mAOD. The maximum water level at the gauge location (RE_1017) exported from the model is 74.479m. This is a level difference of 259mm. Given that this model is to be used to develop an outline Scheme this accuracy is adequate.

There were a number of photographs taken throughout the day timestamped from 13.37 – 17.52. The peak at the gauge, 12km downstream, was at approx. 18.45.

The photos and the simulated results were compared:

Time – 14.10

Photo taken at 14.10 from Thomas Telford Bridge in Langholm on 05/12/15

Model output at corresponding time superimposed onto Google Earth

Photo taken at 17.12 at Waterside in Langholm on 05/12/15

Model output at corresponding time superimposed onto Google Earth

The reported flooding of the basement is not shown in the model. This recorded flooding of the basements may very possibly have been caused by surface water flooding or more likely by drains backing up, not being able to discharge due to high water levels in the watercourses.

3.9 31st October 1977

The most significant flood event recorded in Langholm occurred on 31st October 1977. This event is the third largest on record at the Canonbie gauging station 12km downstream of Langholm. The River Esk overtopped its banks.

The SEPA level gauge started recording data in June 2015; therefore there is no recorded level data at Thomas Telford Bridge for this event. The extent of the flooding was not recorded and there are no recorded flood markers from this event. A number of photos were taken however they are not timestamped. Therefore, as the photos carry significant uncertainty, they will be used more as a guide than calibration data. The photos can be seen in Appendix A.

3.10 31st October 1977 Model Build

Through the hydrological analysis this event has been calculated as a 1 in 21 year return period at the Canonbie gauge. An inflow file was set up for the 1 in 21 year estimated flows in all three watercourses based on the design hydrograph which has been calculated in the hydrological analysis. The model was run with this inflow file and the modelled extents and water extents in the area were compared to the photos.

The river wall along George Street was built into the model with the gap at the steps. A number of existing boundary walls throughout the town which may have an impact on the flow paths were added as porous walls. See *Section 3.1 Structures, 1D structures in 2D domain* for further information on the porous walls.

Using the topographic survey and the photos the water level is estimated to be approximately 74.291m at the steps on George Street and 74.420m upstream of the footbridge. Note the photos are believed to have been taken some time after peak river levels had been reached.

The maximum simulated water level at the steps on George Street (Section RE_1085) = 74.594m and upstream of the footbridge (Section RE_1133) = 74.527m. As both these water levels are recorded during the peak, the difference between the levels estimated from the 1977 photographs, (after the peak) and the modelled level (during the peak), is considered acceptable.

Model output at corresponding time superimposed onto Google Earth - Looking upstream from Thomas Telford Bridge

Model output at corresponding time superimposed onto Google Earth - Looking downstream from George Street

3.11 Calibration Conclusion

For the December 2015 event, an approximate 1 in 12 year return period, there is a difference of 259mm between the peak recorded and modelled water levels. This is supported by the anecdotal evidence which shows the modelled flood extents similar to those in the observed in the photos. Given that this model is to be used to develop an outline Scheme this accuracy is adequate.

While there is little confidence in the information available for the 1977 event, the modelled flood extents are similar to those observed in the photos which would further increase the confidence in the model.

6. Sensitivity

Item Checked	Modeller Comments	Reviewer Comments
Sensitivity scenarios:	Boundary conditions: 20% flow increase	25/03/19 FC
Check Brief and agreed with Client	Increase in flood extents – sensitive to flow increase	
	Roughness: 1D & 2D roughness increased by 40%	
	Significant increase in flood extents – very sensitive to roughness increase	
	to roughness morease	
	Model resolution : 2D Zone increased from max 25 to 5, and min 5 to 1. Mesh Zone increased from max5 to 2 and min 1 to 0.5.	

APPENDIX E

Flood Maps – Historic Scenarios

APPENDIX F

Sensitivity Analysis Output Tables

Cross Section:	Design Level:	Flow Increase	Roughness Increase	Resolution Change
EW_0000	85.141	85.435	85.581	85.141
EW_0000_int13	85.032	85.325	85.482	85.032
EW 0000 int27	84.876	85.17	85.344	84.876
 FW_0000_int41	84 706	84 992	85 165	84 706
EW_0057	94.547	04.002	03.103	94.547
	04.047	04.025	04.971	04.047
EVV_0064	84.427	84.695	84.939	84.427
EW_0161	83.803	84.088	84.346	83.803
EW_0161_int25	83.623	83.912	84.177	83.623
EW_0161_int51	83.455	83.747	84.019	83.455
EW 0161 int77	83.311	83.603	83 878	83.311
EW/ 0265	83 107	83.486	03.070	83 107
LVV_0203	00.197	00.400	03./5/	00.197
EVV_0294	82.998	83.302	83.598	82.998
EW_0379	82.559	82.902	83.245	82.559
EW_0464	82.045	82.393	82.871	82.045
EW_0469	81.799	82.169	82.754	81.799
EW 0575	80.963	81.243	81 475	80.963
EW 0658	80 267	80 479	90,662	80 266
EW 0729	70,721	70,000	80.003	70,721
EVV_0/20	79.731	19.922	80.052	79.731
EW_0798	79.096	79.25	79.353	79.095
EW_0857	78.623	78.79	78.885	78.624
EW_0924	78.154	78.394	78.486	78.166
EW 0964	78.017	78.267	78 34	78.02
EW 1022	77 734	77 075	70.04	77 730
EW 1101	77.000	77.000	/8.031	77.000
	77.306	11.609	77.5	77.308
WW_0384	79.232	79.51	79.676	79.232
WW_0435	78.736	78.968	79.193	78.736
WW_0447	78.685	78.915	79,129	78.685
	78 384	78 623	78.84	78 384
WW 0532	77 000	70 104	70.04	77 00
WWW_0552	11.090	77.055	/8.35/	11.09
WW_0591	77.406	77.655	77.867	//.40/
WW_0674	76.594	76.845	77.074	76.594
WW_0713	76.133	76.373	76.499	76.134
WW 0757	75.663	75.874	76 033	75.663
	75 610	75 829	76.014	75 611
W/W_0757_int20	75 540	75 777	70.014	75 551
<u>vvvv_0757_IIIi20</u>	75.549	75.777	/5.988	70.001
WW_0757_int30	75.478	75.715	75.96	75.479
WW_0798	75.399	75.66	75.933	75.4
WW_0845	75.195	75.584	75.855	75.193
WW 0900	75.020	75.482	75 766	75.021
WW 0955	75.028	75.473	75.700	75.020
<u> </u>	75.020	75.475	/5./62	75.029
VV VV_0992	75.024	/5.4/1	75.76	75.024
Footbridge_u/s	75.053	75.507	75.779	75.054
WW_0000	81.613	81.847	82.065	81.613
WW 0053	81.326	81.55	81,739	81.326
	80,989	81.22	81.409	80,989
W/W 0152	80 775	81.017	01.403	80.776
VVVV_0152	80.775	01.017	81.107	80.770
WW_0200	80.343	80.555	80.694	80.345
WW_0251	79.934	80.218	80.383	79.933
WW_0309	79.588	79.854	80.054	79.589
WW_0360	79.783	80.101	80.148	79.783
RE 1197	75 147	75 567	75 920	75 147
RE 1213	75 160	76 604	75.030	75 161
	75.100	75.504	/5.836	75.101
RE_1241	/5.103	/5.532	75.791	/5.103
WW_BR_DS	75.098	75.528	75.793	75.1
WW_1144	75.102	75.53	75.788	75.103
RE_1241	75.103	75.532	75.791	75.103
RE 2842 DS	69.713	70.255	70 854	69.716
RF 2848	60 507	70 129	70.004	a 0a
	03.037	70.120	70.74	03.0
RE_209/	69.689	/0.248	70.71	69.692
1.006	69.415	69.951	70.372	69.417
1.005	69.027	69.541	69.94	69.03
1.004	68.451	68.954	69.319	68.453
1.003	67.969	68.487	68 824	67.972
1 002	880 33	67 455	67.74	00 33
1 001	64.065	6F 300	07.74	64.067
	04.905	05.322	64.963	04.907
Footbridge_d/s	75.047	75.509	75.782	75.047
WW_1041	75.035	75.522	75.813	75.027
WW_1041_int6	75.038	75.48	75.776	75.039
WW 1041 int12	75.056	75.537	75 800	75.057
 WW 10/11 int19	75.061	75 514	75.009	75 062
W/W/ 1044 :=+04	75.001	75.014	/ 5./90	75.003
vv vv_1041_Int24	/ 5.06/	/ 5.533	75.807	/5.068
vvvv_1041_int30	75.073	75.559	75.818	75.075
WW_1041_int36	75.078	75.533	75.805	75.081
WW_1084	75.083	75.524	75.802	75.086
WW BR US	75 106	75 547	75 010	75 11
RE 1241	75 102	75 500	70.010	75 100
1241	10.103	10.032	/5./91	75.103

Flow Diff. (m)	Roughness Diff.	Resolution Diff.
0.294	0.440	0.000
0.293	0.450	0.000
0.294	0.468	0.000
0.200	0.459	0.000
0.268	0.512	0.000
0.285	0.543	0.000
0.289	0.554	0.000
0.292	0.564	0.000
0.292	0.567	0.000
0.289	0.560	0.000
0.304	0.600	0.000
0.343	0.080	0.000
0.370	0.955	0.000
0.280	0.512	0.000
0.212	0.396	-0.001
0.191	0.321	0.000
0.154	0.257	-0.001
0.167	0.262	0.001
0.240	0.332	0.012
0.230	0.323	-0.002
0.303	0.194	0.002
0.278	0.444	0.000
0.232	0.457	0.000
0.230	0.444	0.000
0.239	0.456	0.000
0.244	0.467	0.000
0.249	0.401	0.001
0.240	0.366	0.001
0.211	0.370	0.000
0.219	0.404	0.001
0.228	0.439	0.002
0.237	0.482	0.001
0.261	0.534	0.001
0.389	0.660	-0.002
0.445	0.740	0.001
0.447	0.736	0.000
0.454	0.726	0.001
0.234	0.452	0.000
0.224	0.413	0.000
0.231	0.420	0.000
0.242	0.392	0.001
0.212	0.449	-0.002
0.266	0.466	0.001
0.318	0.365	0.000
0.420	0.691	0.000
0.424	0.676	0.001
0.429	0.688	0.000
0.430	0.695	0.002
0.428	0.000	0.001
0.542	1.141	0.003
0.531	1.143	0.003
0.559	1.021	0.003
0.536	0.957	0.002
0.514	0.913	0.003
0.503	0.868	0.002
0.518	0.855	0.003
0.357	-0.002	0.002
0.462	0.735	0.000
0.487	0.778	-0.008
0.442	0.738	0.001
0.481	0.753	0.001
0.453	0.735	0.002
0.466	0.740	0.001
0.486	0.745	0.002
0.433	0.719	0.003
0.441	0.707	0.004
0.429	0.688	0.000

RE_1267	75.043	75.487	75.752	75.045
RE_1290	75.005	75.456	75.721	75.005
RE_1311	74.973	75.424	75.696	74.97
RE_1330	74.935	75.389	75.662	74.934
RE_1357	74.891	75.346	75.615	74.89
RE_1379	74.810	75.268	75.544	74.811
RE_1401	74.706	75.162	75.453	74.709
RE_1451	74.689	75.161	75.406	74.692
RE_1503	74.446	74.913	75.226	74.449
RE_1503-0-RE_1546	74.410	74.881	75.195	74.412
RE 1503-1-RE 1546	74.378	74.85	75.165	74.381
 RE 1546	74.332	74.806	75.127	74.335
 RE 1546-0-RE 1590	74.258	74.731	75.069	74.259
 RE 1546-1-RE 1590	74.188	74.663	75.016	74.187
 RE 1590	74.122	74.6	74 959	74.117
RE 1635	74.013	74.491	74.836	74.012
 RE_1686	73.878	74,331	74 659	73.877
RE 1738	73 690	74 111	74.000	73 704
RF 1782	73 545	73 962	74.401	73 549
RE 1833	73 397	73 802	74.304	73 402
RE 1897	73 254	73 659	74.11	73 262
RE 1948	73.022	73.368	73.925	73.018
RF 1998	72 865	73 107	73.069	73.010
RE 2060	72.000	72 002	73.495	72.007
PE 2101	72.049	73.002	/ 3.334	72.544
RE_2101	72.542	72.952	/3.283	72.044
RE_214/	72.435	72.868	73.201	72.437
RE_2147-0-RE_2204	72.377	72.813	73.157	72.379
RE_2147-1-RE_2204	72.322	72.755	73.108	72.324
RE_2204	72.270	/2./14	73.073	/2.2/2
RE_2232	/2.108	72.591	72.983	/2.111
RE_2325	72.028	72.563	72.89	72.031
RE_2431	71.639	72.177	72.589	71.642
RE_2431_int17	71.568	72.109	72.528	71.571
RE_2431_int35	71.492	72.038	72.465	71.494
RE_2431_int53	71.421	71.975	72.406	71.423
RE_2431_int71	71.349	71.913	72.347	71.351
RE_2431_int89	71.259	71.829	72.273	71.262
RE_2431_int106	71.167	71.746	72.2	71.17
RE_2555	71.086	71.682	72.141	71.089
RE_2555_int24	70.886	71.473	71.973	70.888
RE_2555_int49	70.740	71.312	71.816	70.743
RE_2555_int74	70.617	71.192	71.696	70.62
RE_2654	70.528	71.107	71.603	70.531
RE_2734	70.356	70.948	71.389	70.359
RE_2842_US	69.985	70.546	70.996	69.988
RE_0000	79.033	79.607	80.089	79.034
RE_0049	78.895	79.456	79.918	78.895
RE_0154	78.575	79.11	79.555	78.575
RE_0259	78.247	78.753	79.154	78.247
RE_0358	77.914	78.373	78.747	77.915
RE_0412	77.739	78.143	78.482	77.739
RE_0464	77.616	77.999	78.257	77.616
RE_0506	77.575	77.944	78.14	77.575
RE_0563	77.332	77.678	77.886	77.332
RE_0623	77.134	77.482	77.664	77.134
RE_0673	76.973	77.329	77.487	76.973
RE_0730	76.771	77.15	77.29	76.769
RE_0778	76.559	76.988	77.128	76.553
RE_0833	76.396	76.85	76.981	76.396
RE_0894	76.382	76.848	76.944	76.376
EK015	76.268	76.725	76.841	76.268
EK015-0-EK016	76.315	76.789	76.864	76.314
EW_1115	76.709	76.883	77.076	76.71
EW_1115_int5	76.607	76.881	77.067	76.608
EW_1115_int11	76.525	76.882	77.06	76.525
EW_1115_int17	76.471	76.885	77.055	76.47
EW_1138	76.451	76.889	77.052	76.452
EW_1181	76.395	76.851	76,998	76.396
EW_1181 int14	76.386	76.847	76.986	76.386
EW 1181 int28	76.379	76.841	76.977	76.38
EW 1181 int43	76.375	76.836	76.067	76.375
EW 1239	76.373	76.838	76.062	76.374
EW 1239-0-EW 1347	76 352	76 823	76.302	76 354
EW 1239-1-EW 1347	76.319	76 788	76.043	76.313
EW 1347	76.281	76.75	76.839	76.282
EK015-0-EK016	76 315	76 780	76.064	76.202
RF 1001	75.075	75 67	70.004	76.314
	10.210	10.01	/0.028	13.211

0.444	0 700	0.002
0.444	0.709	0.002
0.451	0.716	0.000
0.451	0.723	-0.003
0.454	0.727	-0.001
0.455	0.724	-0.001
0.458	0 734	0.001
0.456	0.747	0.001
0.430	0.747	0.003
0.472	0.717	0.003
0.467	0.780	0.003
0.471	0.785	0.002
0 472	0 787	0.003
0.474	0.705	0.003
0.474	0.795	0.003
0.473	0.811	0.001
0.475	0.828	-0.001
0.478	0.837	-0.005
0.478	0.823	-0.001
0 453	0 781	-0.001
0.421	0.761	0.001
0.421	0.701	0.014
0.417	0.759	0.004
0.405	0.713	0.005
0.405	0.671	0.008
0.346	0.647	-0.004
0.040	0.620	0.002
0.332	0.030	0.002
0.353	0.685	0.002
0.410	0.741	0.002
0.433	0.766	0.002
0.436	0.780	0.002
0 433	0.786	0.002
0.433	0.700	0.002
0.444	0.803	0.002
0.483	0.875	0.003
0.535	0.862	0.003
0.538	0.950	0.003
0.541	0.960	0.003
0.546	0.000	0.002
0.540	0.975	0.002
0.554	0.985	0.002
0.564	0.998	0.002
0.570	1.014	0.003
0.579	1.033	0.003
0.596	1 055	0.003
0.597	1.000	0.002
0.387	1.007	0.002
0.572	1.076	0.003
0.575	1.079	0.003
0.579	1.075	0.003
0.592	1.033	0.003
0.561	1.011	0.003
0.574	1.056	0.001
0.374	1.000	0.001
0.561	1.023	0.000
0.535	0.980	0.000
0.506	0.907	0.000
0.459	0.833	0.001
0.404	0.743	0.000
0.303	0 6/1	0.000
0.303	0.041	0.000
0.369	0.565	0.000
0.346	0.554	0.000
0.348	0.530	0.000
0.356	0.514	0.000
0.379	0.519	-0 002
0.420	0.515	0.002
0.429	0.009	-0.006
0.454	0.585	0.000
0.466	0.562	-0.006
0.457	0.573	0.000
0.474	0.549	-0.001
0 174	0.367	0.001
0.274	0.460	0.001
0.2/4	0.460	0.001
0.357	0.535	0.000
0.414	0.584	-0.001
0.438	0.601	0.001
0.456	0.603	0.001
0.461	0.600	0 000
0.400	0.000	0.000
0.462	0.598	0.001
0.461	0.592	0.000
0.465	0.589	0.001
0.471	0.591	0.002
0.469	0.576	-0 006
0.460	0.570	-0.000
0.409	0.557	0.001
		0.001
0.474	0.549	-0.001

RE_1017	75.321	75.72	76.045	75.322
RE_1037	75.287	75.697	76.014	75.288
RE_1063	75.265	75.684	75.989	75.265
RE_1085	75.262	75.677	75.971	75.262
RE_1111	75.244	75.663	75.947	75.244
RE_1133	75.212	75.629	75.914	75.213
RE_1151	75.189	75.606	75.884	75.189
RE_Weir	75.166	75.584	75.869	75.166
RE_1178	75.170	75.59	75.859	75.17
RE_1197!	75.156	75.577	75.844	75.157
EK015-0-EK016	76.315	76.789	76.864	76.314
EK015-1-EK016	76.131	76.609	76.72	76.136
EK016	76.071	76.543	76.636	76.063
EK017	75.931	76.408	76.489	75.937
RE_0984	75.991	76.466	76.485	75.993

0.399	0.724	0.001
0.440		
0.410	0.727	0.001
0.419	0.724	0.000
0.415	0.709	0.000
0.419	0.703	0.000
0.417	0.702	0.001
0.417	0.695	0.000
0.418	0.703	0.000
0.420	0.689	0.000
0.421	0.688	0.001
0.474	0.549	-0.001
0.478	0.589	0.005
0.472	0.565	-0.008
0.477	0.558	0.006
0.475	0.494	0.002
0.60	1.14	0.01
	0.410 0.419 0.415 0.417 0.417 0.417 0.417 0.418 0.420 0.421 0.474 0.474 0.478 0.472 0.477 0.475 0.60	0.410 0.727 0.419 0.724 0.415 0.709 0.419 0.703 0.417 0.702 0.417 0.695 0.418 0.703 0.420 0.689 0.421 0.688 0.474 0.549 0.472 0.565 0.472 0.565 0.475 0.494 0.60 1.14

APPENDIX G

Flood Maps – Design Scenarios

